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Quantum-Mechanical Comrmunication Theoi"y
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Abstract — We are concerned with the problem of finding the struc-
ture and performance of the receiver that yields the best performance
in the reception of signals that are described quantum-~mechanically.
The principles of statistical defection and estimation theory are dis-
cussed, with the laws of quantum mechanics taken into account, Sev-
eral specific communication systems of practical interest are studied
as examples of applying these principles. Basic concepts in quantum
mechanics that are ﬁeeded in these discussions are briefly reviewed.
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. INTRCDUCTION

The performance and structure of a receiver in a communication
system depeﬁd on the form of the signals used to transmit messages
and the nature of the random noise that accompanies the signals. For
a given performance measure, the best structure of the receiver can

‘be determined by the principles of détection and estimation theory, which
views the receiver as an instrument for testing certain hypotheses about
its input and applies the methods of statistical decision theory [1-4].

Although real receivers are perturbed by a variéty of noises, whose
characteristics differ from one application to another, thermal noise is
always present. By thermal noise, we mean the {ype of noise that arises
from the chaotic thermal agitation of the atoms and molecules composing
the receiver and its surroundings [5-6]. The upper limit to the receiver
performance in the reception of a given set of signals can be ascertained
by calling upon detection or estimation theory to determine the best
receiver for réceiving these signals when they are accompanied only by
thermal noise. )

In most treatments of ideal reception of signals at microwave fre-
quencies, it is assumed that the electromagnetic fields of signal and
noise, the receiver, and the interaction between them behave in accor-
dance with the classical laws of electromagnetism. The noise generated
by an ideal receiver itself can be accounted for in the thermal noise
accompanying the signals at its input. The ideal receiver can examine
its input in every detail in order to extract all information relevant fo
the optimum reception of the given signals without introducing more .
uncertainty about them. Usually, the input to the receiver is described
by the waveforms of the electric field over the receiving aperture.

When the signals to be detected are composed of optical rather than
microwave frequencies, the input fields and their interaction with
matter can be described accurately only by the laws of quantw'am mechan-
ics. The postulate that the ideal receiver can make use of every detail
of its input without introducing further uncertainty must be scrutinized.
By virtue of the uncertainty principle of quanium mechanics, for instance,

the amplitude and phase of the input field cannot be determined



simultaneously with arbitrary accuracy. Indeed, an electric field having
both precise ai:nplitude and phase cannot in principle be generated.
Whereas the limitations imposed by the laws of quantum mechanics neg-
ligibly affect the reliability of a communication system at microwave
frequencies, they are often more influential than the thermal noise at
optical freqﬁencies.

In early studies of the quantum-mechanical aspects of communication
systems, emphasis was placed on finding upper bounds to channel capac-
ity and on evaluating performance of sys;tems incorporating specific
receivers. Channel ca’pacities were derived for-communication systems
using  known receiyers, such as linear amplifiers, heterodyne and
homodyne receivers, and photon counters [?-13]. Quantum-mechanical
limitations on the accuracy of measurements made by a phase-sensitive
receiver are taken into account by introducing at its input a frequency-
dependent noise statigtically similar to thermal noise. Quantum limita-
tions on the detection of known and random signals in thermal noise
were: found when the receiver measures the strength of the electric field
as in a heterodyne receiver [14].

We are concerned with the problem of finding the structure and per-
formance of the receiver that yields the best performance in the receptien
of signals that are described quantum-mechanically, In Sections IV and V,
the principles of statistical detection and estimation theory, taking into
account the laws of quantum mechanics [15- i8],are discussed. Several
specific communication systems of practical interest are studied as
examples of applying these principles. Basic concepts in quantum
mechanics needed in these discussions are briefly reviewed in Section II.



II. QUANTUM MECHANICS

A thorough introduction {o quantum mechanics can hardly be fitted
into the compass of this paper; at most we can present the basic rules
and concepts. The reasons behind them and the techniques of applying
them to physical problems have been discussed in textbooks [19,20].
We ‘shall content oui‘selves with asserting that from these principles
a broad and accurate understanding of the physical world in general,
and of the properties of matter and radiation in particular, have
been achieved.

To great accuracy, the behavior of all physical communication -
systems is governed by the laws of quantum mechanics. Whereas
the classical laws predict the behavior of communication systems
operating at microwave frequencies or below with reasonable accu-
racy, the radiation fields and the receix;ers in communication sys-
tems at optical frequencies can only be adequately described quantum-
mechanically, We shall call a system classical or quantum-mechanical
depending on whether a sufficiently accurate description of its

behavior requires classical or gquantum-mechanical laws.

State Vectors and Operators

As in thé case of a classical system, the condition of a quanfum-mechanical
system at any instant of time is completely specified- by its state.
Mathematically, the state of a gquantum-mechanical system is
described by .a state vector ]Lb) in a Hilbert space JC over the field
of complex nurnber’s [21]. Any state vector Ilp) can be expressed in
terms of a linear combination of vectors fcbn) in a basis — coordi-
nate System —1|¢_)} in the Hilbert space ¥ [22]

o0

[y = ) anlen).

n=1

Hence without loss of generality, lq:) can be thought of as-a column



vector having an infinite number of components that are the com-
plex numbers a, State vectors can be combined 1inear1y to form a
new vectior that also represents a possible state of the system.,
Associated with any Ix].t) is a Hermitian conjugate (L]Jl, which can be
regarded as a row vector whose components are complex conjugates
of those in fLIJ);

The scalar product of two state vectors I¢) and ,LiJ) is a complex
number, written (ci)ltiJ); in terms of the components ian} and {bn} of

these vectors,

(sloy =) ok (1)

n

Following Dirac, we call Lp) a ket, and (q:l a bra because together
they form a bracket (¢]¢) Although the components a and b of the
kets l ¢} and ’1{1) depend on the basis to which they are- referred the
value of the scalar product (¢‘¢) is independent thereof. The squared
length of the ket IL]J) is (QJILIJ); when it is {inite, the ket is normal-
ized to.have unit length: (L]J,‘d:) = 1, Not all state vectors in gquantum
mechanics can be assigned a fmlte length. Two kets differing only
by a phase factor e“ i that is common to all components describe phys-
ically identical states,

The kets ]LIJ) are transformed by linear operators. A linear oper-

ator % can be expressed in term of the kets ]¢n) in a basis {,qan)}

When represented in terms of the basis {Ic{:n)}, the operator is asso-

I¢m><¢ml*s 1o, ) e, |-

1 M3

ciated with a square matrix, albeit usually infinite in extent, whose

elements are

BEXCIN I



We can, therefore, regard a linear operator as a square matrix, An

Opéra;ttor % ‘is said to be Hermitian when its associated matrix equals
the iransppse conjugate matrix E+. ’.':.“+ is called the Hermitian adjoint
of E. '
Suppose that a Hermitian operator & has a digcrete set (§1,§2,... gn,... )
of eigenvalues. The associated eigenvectors l&i), ]éz), e ]gn), e
are defined by the eigenvalue equation
=l8,) = 6,16, @)

Because = is Hermitian, the eigenvalues §n are real., The eigenvectors
are orthogonal. Being normalized to unit length, they have the scalar
products

(EalEd =0, (3)

where Gnm is the Kronecker delta symbol. Our interest will be
restricted to those Hermitian operators whose eigenvectors form a

_complete set,

o0

Z e y¢6, 1 =L, (4)

n=1

where 1 is the identity operator: ﬂlﬂ[t{:) = |k|1>, for all !Lp) ‘Having
properties (3) and (4), the eigenvectors Ign) form a2 basis in term
of which any ket ]111) can be expressed as

[+ ]

iy =Y eale, ezt lu. 8

n=1 -

If, on the other hand, a linear operator z has a continuum of eigen-

values €,

zlt) = ¢]e). (6)



the eigenvectors I;) have infinite length and are so normalized that

(&' gm = s(g-Lm, (7)
where &({'-¢{") is the Dirac delta function., Their compleieness relation
now is

0
(" Joyelae= 1, ®)
—co

" by virtue of which any ket !Lb) can be expressed as

[ =S vt |¢) a, v(z) = <L ]uy. (9)

Observables and Quantum-Mechanical Measurement

Each measurable physical quantity, or observable, of the system,
such as position, momentum, .or angular momentum of a particle, is
associated with a Hermitian operator that has a complete set of
eigenvectors. ' The eigenvalues of such a Hermitian operator may
form a discrete set, a continuous set, or a combination of both [23].
Without loss of* generality, we shall discuss observables and their
operators as though their spectra were discrete. Modifications to
cover those with a continuous spectrum of eigenvalues, or a com-
bination of diserete and continuous spectra, will involve changing
Kronecker deltas to Dirac delias, and sums to inﬁ:egfations.

Quantum mechanics postulates that an exact measgrement of
an observable whose operator is = always yields as an outcome
one or another of the eigenvalues E, f %. Immediately after
a measurement of & that yields the elgenvalue §k, the measured
system is in the corresponding eigenstate |§k) and repeatmg
the measurement 1mmed1ately afterwards on the sam,e system

would yield the same value Ek[ 41.



Furthermore, if before measurement the system is in state [{),
the probability that the measurement will yield the value §k is given
by

Pr (6, = (&, [¥)[* = e, |? (10)

where Cy is the coefficient in the expansion of [L!J) as in (5). By

the closure relation (4), these probabilities sum to 1,

Z Pr (gkhz ColE) CE 9y = (ulwy = 1.
k k

If the observable, as Z, has a continuous spectrum, ,(L]Lb)]z dg is
the probability that the outcome of a measurement lies beiween §
and ¢ + d&. " Hence |<;|Lp) lz is the probability density function of
the outcome of the measurement, ﬁ‘rom (2) and (4), the expected

value of the outcome of a measurement of ¥ is

}g[ﬁ]=z £, Pr (&) = (y[=lv), (11)
k

when the system is in state ll!J) This expression for the expected
value is independent of the coordinate system used to describe the
ket | ).

The outcome of a measurement of the observable ¥ is the answer
to the question, "What is the value of E?:’. Instead, suppose that
the weaker question is asked, "Does the value c;f = lie between
a and b?", and the actual value within the range (a,b) is of no con-
cern. While this question can also be answered by measuring =
itself, it is sufficient to measure the observable representeci by
the operator -

0= Z !E.n)(ﬁn[, (12)
R(a, b)



where R(a, b) is the set of eigenvalues § of ¥ lying within (a,b). A
complete set of eigenvectors of I ap 5 the eigenvectors |§ Y of B

nab has only the two eigenvalues, l and 0, however. The outcome
of the measurement of nab will be 1 if the value of ¥ lies in
R{a,b) and 0 otherwise. If the state of the system before measure-
n:rlent'is fxp), the expedted valie of the outcome is

E[Hgb],=<¢lﬂabl¢>=z ([0 ] =Prite Rz} (13)
R(a, b)

which is the probability that the valie £ of the observable & lies
between a and b.
The operator Hab in (12) is a prqjectiox_l‘operator. It obeys the

defining equation

2 _1n (14)

I ab ab

for prejection operators, as can be seen by using (12) and the Jortho-
normality of the kets [8 ) (3). Since TI ab (H =0, the on1y£e1gen—
values of I'i are-0 or 1, as we have already observed The operator
Hab progects the ket |Ll.|) onto the linear subspace gpanned- by -the
kets I& ) for which § & R(a,b). The statement, "The value of the
observable E lies between a and b," is" a proposfnon that 1s gither
true or false, and such prOposrl:mns correspond in the 10g1c of
quantum mechanics to projection operators, like, Hab‘ The gec_lsmns
among hypothéses ireated in detection. theory will be expressed in
this form. ° ' '

If two observables, say & %= and T, are to be measured exactly
and simultaneously on the same system, it must be left after the
measurement. in a state !8 s U ) that is an eigenstate of both

operators & and, T with elgenvalues g 0 Vet respectlvely [25],

=t g[8 v

n' m>“

{15)
Tlgn’ v

=. UIIIII gn’ Um>:



and this must hold true for all possible outcomes §n, v ‘of the mea-
surement. It follows from (15) and the completeness of the states
lén, um) that a necessary and sufficient condition is that the operators

i)

= and T commute,
=T = TE. (16)

Two observables are said to be compatible when their corresponding
operators commute. As an example, the three Cartesian coordinates
X, ¥y, z of a particle are compatible, for the three associated oper-

ators X, Y, Z commute,

Uncertainty Principle

When the two operators E and T do not commute, the corresponding
observables éarmot be measured simultaneously on the same system
with complete precision. This is a crude: statement of the Heisenberg
uncertainty principle. To express this principle more precisely, we
suppose that the operators E and T satisfy the commutation relation,

where Z is either a constant times the identity operator 1, or another

operator., Let

I° (17)

L)

°1- Bl

denote the mean-square deviation of the outcomes of a measurement

= El

I

o

o

of B. Similarly, we define

o% = E[7°] - E[x]. (18)

-

When the system is in the state Inb) before the measurement,
2 _ 2 - 2
o' = (W] B by - (4l E |w))

aqd

10



o2 = (o] 72 oy - ((ulrleyn®

By using the Schwatz inequality, it can be shown {26] that the product

¢ oy of the standard deviations satisfies the inequality
=t - .

ooy = (]2 ]9 /2 (19)

for all state vectors |¢). Equation (19) is called the Heisenberg
uncertainty relation,
This principle can be illustrated by an example. The two operators

P and Q satié’fy the commutation relation
Q. P]=QP ~ PQ = ifi,

where i = h/2w is Planck's constant. The corresponding observables
are the coordinate q and momentum p, respectively, of a particle
with one degree of freedom. The same commutation relation holds
for the operators éoi‘responding to the charge and current in a loss-
less LC circuit. From (19},

soop = /2. (20)
In order to interpret this relation, we think of a lange ensemble
of N independent systems, all of them in the same state |\JJ) On
some systems Q is measured, on others P. The outcomes will be
random wvariables, differing -from one system to -anothe.r, but when
N » 1, the average values will be near their mean values and the
mean-square ‘deviations near U'ZQ and 0‘1:2,: respectively. Just what
average valu'es-gnd mean—sc-;uare deviations o-é, cr% are obtained -
depends on the state [\p)' in which the systems were originally pre-
pared. The uncertainty principle (20) asserts that for no st?.te IL[J)
can the product of the standard deviations QTP be less than -—%—‘:‘1

Density Operators

Given an ensemble of independent systems, all in the same state
]¢), measurement of an observable such as & on each will in general

11



produce a random collection of results, the probability of obtaining
the value &  being l(gn]ll})lz, n=1, 2, .... This randomness is
strictly a quanfum phenomenon. The kind of randomness met in
classical physics must also somehow be incorporated into the frame-
work of quantum mechanics, so that we can treat problems involving
noise or random signals. The mean:s nof doing so is provided by the '
density operator p [27 28].

Let a large number of systems of the same kind be prepared

each in one of a set of or'thonormal states l¢ o) and let the fraction

of systems in state Han} be P, n= 1,2, ..., with
(b 60 =80 (21)
<0
Z P_=1 (22)
n
n=1 .

P is the prior probablhty of the state ] ¢ ) If now we measure the
observable & , the probability of ob‘l:almng the value ’é will be

pefed= ) B Icg loy]? = (g lolty. (23)
n=1

In this expression, the operator p . defined by

.60

o= ) Pleny (sl (24)

n=1l

is called the density operator. Since p is a linear operator, it can

also be thought of as a square matrix. The expected value of the

outcome of our measurement of & is .

o0 <Q cO

E(=) = z b Prify ] = E el G lelEy) = Z (& lem (£

=] k=1 k=1
= Tr (p=E ), : (25)

12



where Tr stands for the trace of a matrix, the sum of its diagonal
elements,

Clearly, the density operator p is Hermitian. I has a complete
set of orthonormal eigenvectors |<§> n> corresponding to non-negative
eigenvalues Pn and Tr p = 1. Moreover, any Hermitian operator with
non-negative eigenvalues and irace 1 may be considered as a density
operator that describes an ensemble of quantum—mechamcal systems.

A density operator p also has the property Tr p < 1, with equal-
ity if and only if one of the prior probabilities Pn equals 1 and all
the rest 0. When this is so, the density operator is a projection
operator, p = [¢n) (¢n
all in the same state |¢n) We say when p is a projection operator

, and the ensemble is a collection of systiems

that it represents a system in a pure state; otherwise, with

Tr pz < 1, it represents a mixed state.

Time Dependence

Thus far, we have not shown how a quantum-mechanical system
behaves dynamically. To discuss the mammer in which the state of
a system changes with time, let us denote the state vector at time
by ]Lp(t)). It is clear from the discussions on .quantum-mechanical
measurements ‘that the state vector changes irreversibly in an unpre-
dictable way when the system interacts with a measuring device.

But when a closed quantum-mechanical sysiem is not perturbed by
any measurement, its state vector EL[J (t)) at time t obeys a linear

differential equation of the first order in time [29]
i fu) = H|4w), (26)

where H is an operator called the Hamiltonian of the system. We
shall be concerned solely with conservative systems. The Hamil-
tonian of a conservative system does not contain time explicitly;

(26) can be solved to obtain

13



lww)y = exp[“i Tt | fue)y, (27)

which relates the state vector. th(t)) dt time 1t to that at an earlier
time to.

The Hamiltonian H is the operator corresponding to the energy of
the system. For many systems H can be obtained from the classical
expression for the energy in terms of coordinates and moments,
these being simply replaced by their quantum-mechanical operators
apd-properly symmetrized. Thus, for a simple harmonic oscillator

of mass m and frequency w, the Hamiltonian operator is

H = (2m)" ! (PZ+2Q%) , (28)

in terms of the operators P and @ for its momentium and its coor-
dinate.

The operator exp[—i% (t—to)} executes a unitary transformation on

the state vectors ] $), as in (27). Under this {ransformation the
lengths of the kets .I‘L‘) and the angles between them in the Hilbert space
do not change._ This representation of tﬁe time dependence of a syé-
tem as a rigid rotation of its state vectors is called the "Schrddinger
picture.” In the Schrédinger picture, operators not depending explie-
itly on the time are taken as constants. '

We shall use a different, but physically equivalent, representa-
tion of the time dependence of gquantum-mechanical systems, which
is calied the "Heisenberg piéture" [30]. The state vector in the
Heisenberg picture is independent of time. . At time t, an observ-

able E(t) is related to the operator = in the Schrddinger picture

by

() = e}c:p[i"%i- (t_—tO)J = exp‘_—i -%1--(1;—1:01J (29)

Fro:gn this trdnsformation and (26), the equatién of motion for the

ot

observable E in the Heisenberg picture is

14



ds (t) _ 9 (t)
= [=(t), H] + ifi ~5;

(30)

The Hamiltonian H equals the Hamiltonian in the Schrddinger pic-
ture, since fché system is conservative.

If a system is in a statistical mixture of states represented by a
density operator p, p is independent of time in the Heisenberg pic-
ture. The ex;iectation value of a measurement of an observable
% (t) at time t will be

i

B ] = Tr [pE®)]

It is easy to see that this expectation value equals Tr [ = p(t)], where

p(t) = exp[—-%1 H(t—to)} p exp[-ﬁ]:'- H(t—to)] and E are the operators at

time { in the Schrddinger picture.

Ideal Measurement of Incompatible Observables

The class of exact measurements of compatible observables dis-
~cussed above does not-include those measurements yielding approx-
imate values of several incompatible observables. As an example of
devices that make such approximate measurements on the received
field, we mention a high-gain laser amplifier followed by a clas-
sical receiver. The field at the output of such an amplifier can be
treated as a classical field with precisely measurable amplitude
and phase. Therefore, we may consider that the amplifier performs
simultaneous approximate measurements of the amplitude and phase
of its input field [31]. The additive Gaussian noise injected by the
amplifier accounts for the inevitable error in the measurement
imposed by the uncertainty principle.

We shall briefly consider a definition [32] for icea: measure-
ments to inclide such approximate measurements of incompatible
observables., Let X, denote the set of numbers that are the observed

values of the measured observables. By an ideal measurement, we

mean one in which each possible outcome X is associated with a

15



s’;ate vector ]ggn) such that' the probability for obtaining X is
Plx ) = wi(x_|u) [ (31)
~n n i

when the system is in the state [LIJ) i)rior to the measurement, and
w is a normalization constant, Mo.reover, the state of the system
éfter the measurement depends only on the measurement result, and
not at all on its initial state before the measurement. Thus sub-
sequent measurements cannot yiel;:'l additional information about that
initial state,

The normalized state vectior I§n> is called a measurement state
vector., Since some result must be obtained from any measurement,
the set of measurement state vectors must satisfy a completeness

relation of the form

> whe(xd = 1 (32)

n

Any ideal measurement, therefore, -is characterized by a complete
set of measurement state vectors.

Exact measurements of compatible observables are ideal by the
above-mentioned criterion. They are characterized by complete sets
of orthonormal measurement state vectors that ‘are the simultaneous
eigenvectors of the measured observables. In such cases the rela-
tion (31) is satisfied with the normalization constant w equal to
unity, and (32) is simply the completeness relation in (4). The mea-
surement of field amplitude and phase as made by an ideal high-
gain amplifier is also ideal. In this case, the measurement state
vectors are the coherent state vectors defined in (50), and the
appropriate completeness relation is given by (52). These measure-
ment state vectors are not orthogonal. )

Sets of nonorthogonal vectors that satisfy a cornple'l:eness rela-
tion such as (32) are called overcomplete sets. Ideal measurements

yielding approximate values of several incompatible observables can

16



be characterized by overcomplete sets of measurement state vectors.
It is probably true that for every such measurement, in principle,
there is an equivalent exact measurement characterized by an ortho-
normal set of measurement state vectors. Many conveniently realizable
measuring processes correspond, however, to overcomple’c‘e sets of
measurement state vectors, while realization of the equivalent exact
measurements might prove difficult.

A fairly general way of implementing ideal measurement of incom-
patible observables is to combine the sysiem to be measured with
an auxiliary system whose initial state is known. The iwo systems
may be allowed to interact for a length of time. An exact measure-
ment of a complete set of compatible observables for the expanded
system is then made. As an examiale of this prescription, consider
the observables @ and P for a simple harmonic oscillator. We may
combine this system with sn auxiliary system wxomprising a similar
but independent oscillator in its ground'state, whose corresponding
observables are Q' and P'. The observables Q-Q' and P+P' of the
expanded system are compatible, and their simultaneous exact mea-
surement yields approximate values of Q and P. Further analysis
[33] shows-that this prescription indeed yields an ideal measurement
of @ and P.

17



I, . QUANTUM-MECHANICAL DESCRIPTION OF COMMUNICATION
SYSTEMS

A typical communication system is shown in Fig. 1. In ever—y
signaling interval of duration T, the input m of the system is either
one of M messages generated by a digital data source or a set of
parameters carrying analog data. A signal field, whose character-
istics depend on the input message, is generated by the transmitter
and is sent through the channel to the receiver. During each signaling
interval, thel receiver makes an estimate x/:r\x of the transmitied
message. Our objective is to design the receiver so that # minimizes
a given cost function used to measure the fidelity of this estimate.
Exaraples of commonly used cost functions are the probability of error,
Pr[ﬁ\mm], for digital messages, and the mean-square error, F[ ]rfﬁ—-mnz,
for analog data. )

For simplicity, input messages in different signaling intervals are
assumed to be statistically independent. Furthermore, our attention
will be restricted to systems in which the channel is memoryless and
no coding schemes are employed. In these systems, the receiver
makes independent estimates of input messages.in successive signaling
intervals on the basis of the electromagnetic field observed during each
of these intervals. Therefore, we need to be concerned only with the
problem of making an optimum estimate of a single message. The
signal field representing such a message is a time-limited one with
nonzero inétantaneous power only in a time interval of duration T.
Without loss of generality, we let this interval be (0, T).

The receiver admits the incident field through an area normal to
the direction of the transmitter. In an ordinary receiver, this area
corresponds to the effective area of the antenna, which in practice
must be limited to a finite size. This area will be called the receiving
aperture,

-Sinée at any time the instantaneous power associated with a time-
limited signal is ‘nonzero only in a finite region in spé,ce, and the noise
fields at different pdints in space are statistically independent, the

receiver can be idealized as a large lossless box or cavity with

18



perfectly conducting walls. During the time interval (0,7T), the inci-
dent field is admitted into the cavity, initially {emp’cy, through the
receiving aperture, At the end of this interval, the aperture is closed,
and measurements are made by the receiver on the field inside the
cavity, which is called the received field, ’

The received field can be represented as a superposition of normal
modes of the ¢cavity. Each mode behaves like a harmonic oscillator

with frequency Wy the frequencies w, depend on the shape of the cavity.

k
To be more specific, the clagsical waveform, &(r,t), of the received
electric field can be expanded in terms of standing-wave, normal-mode

functions uk(g) of an appropriately chosen cavity of volume V
sty = - /7 D Bilt) w(r) (33)
SN T o kv Eﬁ{ - H
k

where eo,the dielectric constant, is used here for normalization. As
a resuli of boundary conditions at the walls of the cavity, the functions
uk(r) are orthonormal,

S‘cavify AR 52 d.3£ = Ot (34)

Inside the cavity, gk(z) is a solution of the Helmholiz equation
2. - 2,2 '
Vi (r) + (wk/c ) i) =0 (35)

for all k, where c is the velocity of light in vacuum. The oscillation
frequencies Wy of the normal modes are determined by (34) and (35).

As a consequence.of Maxwell!'s field equations, the functions qk(t)
defined by

p(t) = day (t)/dt, (36)

in association with the mdéde amplitudes pk(t) in (33), satisfy the equa-
tion of motion

19



d 2 :

EZ qk(t) + mqu(t) ="0. (37)
Therefore, we may associate each mode of the field with a harmonic
oscillator of frequency °;k' Furthermore, it can be shown from
Maxwell's field equations and from (33)-(35) that the fotal energy H con-
tained in the received field is the sum of the energies of the uncoupled
harmonic oscillators [34]

H = Z (pf:' + mﬁqlz{) /2. (38)
4 :

1t is often preferable to represent the received field in terms of
plane traveling waves rather than standing waves. A particular set of
mode functions suitable for our purpose is the set of plane traveling-
wave mode functions of a cubical cavity of volume V. That is, -

~1/2 .
w () = V12 explik 1), (39)

where e is a unit polarlzatlon vector perpendlcular to the propagation
vector ;_g, and ]k| = mk/C , for all k. The complex amplitude ¢ (t).of
each plane traveling-wave mode is related to the real variables pk(t)

and qk(t) by

o (t) = (200" [ ay(trip (] (40)

Hence the equations of motion for ak(t) are

which have solutions

ak(t) = @ pr[v-imkt]. {41)

20



In‘ terms of these complex amplitudes, the energy of each normal mode

is
H, =Ho e |" - (42)

Quantization oI tne Kacaiation Field

The quantum tﬁeory of radiation [3 5] also treats each mode of the
field as a harmonic oscillator. - The "coordinates® qk{t) and "momenta®
pk(t) are r_eplaced by their corresponding quantum-mechanical operators
Qk(t) and Pk(t),which obey the commutation rule

[Qu(t), P(t)] = QutIP (1) ~ P (1)Qy (1) = i &y, (43)

for all k and n. The complex amplitudes ay in (41) are replaced by
operators a, that are related to the oi)erators Qk(t) and Pk(t) by

a, exp[-iw t] = (21 wk)l/ ? [y @ ()4 1P, (£)]. (44)

1t follows from the commutation rules (43) that the commutation rela-
tions between the operators 3y and their Hermitian adjoints a; are

+ _ -
[ak, an] =81 for all n and k.
In terms of these operators, the electric fieid operatoi‘ is

B(r,t) = i i: (ﬁwk/ZeOV)l/z fk{ak exp[- i{w t- E;r)]—a;; expf +i(w t-k- )i}
(45}

The Hamiltenian of thé field becomes
i= Z Hk’
k
where
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—ﬁwk(a ar +a a ) ﬁ“"k ak i ;) {46)

For reasons that will appear immediately, the operator a;ak is
called the number operator of the kK~ mode. In texts on quantum mechan.

ics, it is shown that the eigenvalues of the operators a;ak are the posi-
tive integers and zero [36]. We.denote the eigenvectors by the corresponding

eigenvalues

+
aglm) = oy o). (47)
Hence by (46), the eigenvalues Ek of the energy-in the kth mode are
_ 1
B, =Ho(nt+3).

When the mode is in the state Ink), it is customary to say that it con-
tains n, photons, each of which carries an energy of Hmk The state |0),

the ground staie,possesses a zero- point fluctuation energy —-ﬁmk
When the operator a acts to the right on an eigenvector lnk) of the

number operator akak, it converts the eigenvector Ink) to |n -1),
i

2l = 0l/2 | 19, . (48)

thereby reducing the number of photons of the mode by 1. For this
reason, a; is called the annihilation operator of the kth mode. Iis

Hermitian ad]omt aii raises the number of photons by 1 and is called

the creation operator,

1/2

ailnk} = (n41)" /% n 41y, (49)

When the k' mode of the field is in a state described by a state
vector [ak)- that is a right eigenvector of the annihilation. operator .,

ayloy) = agla), (50)

where dk kx ky is a complex eigenvalue, the mode is said to be
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in a coherent state [37]. Alternatively, we say that the mode contains
a'coherent signal. The coherent state vector lak> can be expressed

i he &i i +
in ferms of the eigenvectors |nk) of the nu_mber operator a; &, [38]

lak)= ex;{-[ak]z/21z (3. !)

nk=1

-1/2 azk[nk), (51)

and are normalized so that (ak|ak) = 1, Moreover, they are complete,

‘in the sense that

S‘ la) (ﬁkfﬁzﬂ-k/ﬁ =1, (52)

where dzak = ddkx daky is the element of integration in the complex
plane, over the entirety of which the integration is performed. The
coherent state vectors |ak) and |[3k) are not orthogonal, however. Their

inner product is
("lklﬁk-,S = exp[a:iﬁk—[aklz/Z—IBklz/Z]. (53}

The entire field is in a coherent state |{ak 1) when all of its normal
modes are in coherent states. The state vector |{a, }) is simultaneously
a right eigenvector of all of the annihilation operators 2y .

2y e 1) = ¢ Hey - (54)

It can be taken to be the direct product of the state vectors for the

individual modes
,{ak}) = la:]:, LD Y = g l¢k>'.

The vector space spanned by the vectors Hak}} 1s the direct product
space of those spanned by the vectors [ak).

It has been shown [39] that an antenna having a known current distri-
bution and suffering no unpredictable reaction from the surrounding
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field will produce an electromagnetic field that is in a coherent state.
When the field is in the coherent state ,{ak}), the classical waveform
of the electric field can be obtained from (45) and {(54) as the expected
value of the operator El(,f’t)’

&, 1) = (o [ Er, ) {ay )

-2 Im Z ('Hwk/ZEOVF/Z ay exp[——i(mkt-—lj'z}] . (55)
-k

An extensive calculus involving coherent-state vectors has been
developed by Glauber [40, 41}, In particular, it has been shown that a
large class of density operators, including those met in communication
theory, can b;:a expanded in terms of the]::l’:l_,' .

R o« 2 . i
p = S I:’({mk}) 121 {ak) (ak].d s : (56)

where the function P{ {ak}) is called the weight function. This expansion
ig called the P-representation of the density operator p. The weight
function P( {ak}) has many of the properties of a classical probability
density function, but it is not always positive.  In particular,

S P{ {ak'}) k1'-I1 dzak =1

follows from Tr p = 1. The expected value of an operator = is given
by

B2]= T (o7 = § P biladlE Hed T ate

when the state of the field is specified by the density operator p in (56)
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Representation of Noise

For the moment, let us suppose that the field ingide the cavity con-
sists in thermal radiation alone, When this random field is in thermal
equilibrium at an absgolute temperature .7, the density operator Pic
describing the state of the k th normal mode in the P-representation is

Py = S‘ exp[-la[z././f/k]]a) {a] dza/Tr./Vk, (57}
where
N =Tr [para ] = fexpllin /K T)-1}7] (58)

is the average number of photons in the kth mode with frequency o
[42]. K=1.38x107%>
it follows that Py can be expanded in terms of the eigenvectiors ]nk) of

J/deg is Boltzmann's constant. From (51),

+
the number operator a3

Z (l-vk.) vzk]nk) (nk|,

n, =0 (59)

vy = N (A1) = expi-tia /KY).
In the classical limit, KI» Hw, the weight function

P(e, ) = (m ./f/k}m1 exp|- [aklz-/./Vk]

= (1 ./Vk)"l exp{-—(alzcx-i- aiy)/ﬂk}

yields the joint probability density function of the real part Cpne and

imaginary part aky of the complex amplitude ay of the mode [43] Since
'./Vk in (58) becomes approximately equal to K-%w , it follows from
(42) that the average energy of this mode equals K%ndependently of
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its frequency. In classical communication theory, this type of noise is
called the additive white Gaussian noise with spectral density A o= KT
When a normal mode of the received field contains both thermal
noise and a coherent signal that alone -is represented by the coherent
state vector [ [.Lk>, the center of the Gaussian wéight function in the
P-representation is simply shifted from the origin by a phasor oy o "The

density operator Py becomes
P = (n,/t/k)“l § exp[—'a—pklz/_/l/k] |a) (e| da. (60)

In the representation of the operator P 2S 2 matrix in terms of the
basis specified by the eigenvectors |nk) of the number -operator af;ak-,

the matrix elements are [44]

. —~I. .
(x}]pk|m) = (1-v )n! /m]1 172 vf{n(pk_/ ‘/ijn exp[-(1- k)fuklz]

\
(.

X Lann["“'”Vk)z l“k,z/vk]’ m = (61)

<anklm}>=<mfpkln)'*, m<n

v = JVk/(.'/VkH),

where L;n_n(x) is the associated Laguerre polynomial.
The density. operator p for the entire received field when it contains

only thermal radiation in equilibrium is given by the direct product
- 2 2
p=wr 1].;I gexp[—]ak] /‘/Vk]lak)<akl d ak/-rr./Vk, (62)

where v is the number of modes, The operator lp is defined in the
"linear vector space which is the direct product of the linear vector spaces
spamned by the coherent state vectors of the individual ﬁodes. When

a coherent signal is present in the cavity with Gaussian thermal noise,
the density operator, in the P-representation, is
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= S S\'P({ak}) I e ) (| dzak,
k (63)

B(fah) = " det 17" [ 5 ) (et ) o) |
m n

where o is the complex amplitude of the coherent signal in mode m.

Here q; is the mode correlatlon rnatrlx whose elements are

.d,nm = Tr Igia;ah] - Tr I:pajn} Tr [pan]. {64)

When the modes are statistically independent, the mocie correlation
matrix '43 is diagonal,

‘!’mk = N kamk’ (65)
where ./V is the average number of thermal photons in mode k and
is given in terms of the - frequency @, by (58) when the modes are in
thermal equilibrium,

At this point, let us note that the P- representatlon of a den31ty
operator p is not wiique. Tnstead of the coherent states l{ak}>, p can
be expressed in the P-representation in terms of the right eigenvectors
of a set of operators b,, where

Z V3% (6_6)
k=1 '
and the coefficients ij are elements of an unitary matrix V. That is,
i _
e .
Z VikVin = Z VikVnk = S5k (67)
k=1 k=1

An easy algebraic manlpulatlon shows that the operators b, a_nd their

Hermitian adjoinis b satisfy the same commutatmn relations as
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the operators ay and a Hence, b:j and'b:_;' can be regarded as the
annihilation and creatlon operators respectlvely, of a set of new

modes. The riglit eigenvectors {8y }) of the operators bj
bkl{?’k}) - ﬁk]{ﬁkb

are coherent-state vectors spaaining the same vector space as spanned
by the vectors ]{ak}) When the density operator p is expressed in
terms of ]{ﬁk}) in the P- representatlon

=5 Pr{p, {8 ({By H k§1 dzﬁk (68)

the new weight function P1({8,.}) can be dbtained by substituting the

‘relation

-
' +
=), 57 (69)
j=1

in the weight function _P( {a })

If the unltary matrix V is such that the matrix V& "V  1s dlagonal
e density dperator p in (63), When expressed in terms of elgenvectors
of the operators bj given by (66), is

. )
pan fem|- ) It/ e (Bd | L%/ A (r0,
N k=1 .
th .. - . -1_+
where 4 . is the k" diagonal element of the matrix Vo 'V, and
up = Z Vb (71)

Therefore, for any particular coherent signal in Gaussian thermal

noise, a set-of normal modes can be chosen, by approvriatelv choosing

28



the shape of the re¢eiver cavity, to represent the received-{ield so that
the individual modes are uncorrelated.

When the frequency range of the signeil is small so that for all k for
which Fy #0,

N\ = H (72)

N i{ = A in (70) can also be taken to be the average number of thermal
photons in the new normal mode k. The density operator p can be
expresséd in terms of coherent states ]{yk}) that are the right eigen-
vectors of the annihilation operators g.

J
: L= . 2 2 - i 2
p=(w N g_exp[-{lvl--ul - Z Ve | }/JV }1 Hye D (TocH a7y
. - ’ ’ . . k
k#l1 :
(73)
In this expression,
o0 o0
g = Z VimPmr Y= E VimPm’
m=1 m=1]
where the matrix elemernts Vlm are chosen to be
R o0
2 . .
Vi = 04/ 11l le]” = Z lul’nfz. (74)
- m=1

The other rows of the matrix V are chosen so that' V is unitary, We.
see that only the mode with annihilation operator g, =2 pl b/ s
m

contains & coherent signal [18,45]. Hencewithout loss of generality, we
" often need to consider only one properly chosen normal mode of the
received field.

Quantum-Mechanical Receiver

In an ideal réceiver, the signal field accompaniéd by the chaotic

thermal noise is admitted through the receiving aperture into 'a.. loswsless
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cavity during the signaling interval (0,T). At the end of this interval,
the aperture is closed, and measurements are made by the receiver
on the received field, whose quantum-mechanical description has just
been presented,

We shall assume that the measurement made by the receiver is
ideal. Again, an ideal measurement is one in which the state of the
field after the measurement does not depend on that before the mea-
surement, It follows that the probabl:lity distribution of ithe dutcome of
any subsequent measurement does not depend on the transmitted input
message., That is, any measurement made after an ideal measurement
vields no information relevant to the optimum estimation of the trans.-
mitted message [46].

It will become apparent that the optimum performance of the system
is independent of the time — after the receiviﬁg aperture is closed — at
which the observation is made. The choice of the observables measured by
the optimum _receiver: does depend, however, on the time of the obser-
vation.

The ideal receiver that we have discussed thus far might seem to
be much too remote from an ordinary receiver to be relevant to a real
optical communication system. A real optical receiver takes in light
fro:.:n the signal source, along with thermal radiation, éhrough an aperture
of fixed size, and processes this 1ig;ht by lenses, photodetectors, and
possibly coherent heterodyning light generated by a local laser, The
data upon which it bases its decisions are the values of observables
of the electromagnetic field at the aperture during the interval (¢, T).
The field in the cavity of ‘our ideal receiver is a linear functional of
this aperture field. The optimum performance derived for the ideal
receiver really sets a limit to the performance of any optical receiver
processing the same aperture field.

When the signal radiation occupies a narrow band of frequencies
and arrives from a narrow cone of directions, and when the background
radiation is distributed broadly in frequenc'y and angle, the quantum
detection theory developed for the field in the ideal receiver can be
applied to the aperture field itself. The important entities in that theory

30



are the annihilation and creation operators for the mode fields and the
Hilbert space Spamléd by their eigenvectors. Operators having the
same properties can be defined for the aperture fielql by rei)resent'ing

it as a superposition of spatio-temporal modes. Just as the mode func-
tions for the cavity field are orthonormal with respect to integration
over the three-dimensiéns of the cavity, these spatio~temporal modes
are orthonormal for integration o{rer the aperture and the observation
interval (0,T). The eigenvectors of the associated annihilation and
creation operators span a Hilbert space of state vectors to which the
concepts a;nd techniques that we have outlined can be applied [47,48].‘
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IV QUANTUM DETECTION THEORY

When the data source in Fig. 1 is digital, the input m to the trans-
mitter in the signaling intefval (0,T) is one of M messages denoted
My, My, ... My When the transmitted message is mj, the electro-
magnetic field in the receiver cavity is in the statistical mixture of
states specified by the density operator Py- Therefore, in the .time
interval (0,7T), the siate of the received field is specified by one of
M density operators P1r Pos wov Pyre

"The output m of the system is also one of M messages, and is the
estimate of the input message m. That is, the receiver decides in the
time interval (0, T) among the M hypotheses I—I I—I .. HM’ of which
the hypothesis H, is that the message m, is transmltted The receiver

is designed so that the probablllty of error
N
P_=Pr [m#m] (75)

is minimum, ‘

Let zi = (X 1’ XZ’ .o XL) denote the Li-tuple of Hermitian operafors
.corresponding to those observables chosen to be measured by the
receiver. When these operators cofnmtite, a simultaneous measure-
ment of the corresponding observables yields an Letuple x _

(Xln X an,) of parameters, where Xjn is an eigenvalue of the

operatgz'l Xi33i=1,2,...L, For simplicity, we assume that the eigen-
spectra of the operators Xj and pj are d‘iscret.e. That this assumption
imposes no rezl restriction has been pointed out in Section II., '

Let [§n) denote the simultaneous eigenvector of the commuting

operaiors Xl’ X XL corresponding to the eigenvalue ?én' From

51 e
(23), the conditional probability that the outcome of the measurement
of X is X given that the message m;i is transmitted, is

Plx,|my) = (x, le:[5,)- (76)

Let C,J be the prior probability of the message mj, and pj a be the
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. probability that the receiver chooses the hypothesis H. when the out-

come of the measurement is X .

M
z Pip = 1- (77)
=1

The probability of error in (75) is

P, Z z Lo Jn .| e (78)

The manner in which the optimum receiver processes the data
obtained in the measurement is the same as that determined by the
principles of classical detection theory [49]. Specifica,l].;;, the receiver
chooses the hypothesis H, to minimize Pe when the observed value of
X is X if the conditional probability

M
o) = 4P lmy) /) 1P lmy

is maximum, In other words, the probability pj n is 1 for all n such
that

g(x |pj!§n> ?;(X lpilggn), all i# (79)
and all other Pin equal zero., This rule becomes ambiguous when the
equality signin (79) hglds for some i. The ambiguity canbe resolved, how-
ever, and the resultant minimum value of P is not affected by the way

in which this ambiguity is resolved.

Let us define the opefators I, as

I1j= Z Pjnh.‘n}(z,inl; j=1,2,...M, (0)
n

Since the probabilifiejs p;, are either one or zero, the operators Ii, are
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projection operators; therefore, they obey the defining equation (14).
Moreover, it follows from (80), and that pmpjn equals zero when i # j,
that

and
M
ZI%=£. (82)
i=1

In terms of the projection operators H;j’ the probabilitfy of error Pe in

(78) becomes
M
Z by Tr LA (83)

Therefore, the problem of finding the best receiver structure becomes
that of finding the projection operators Hj that sati_s_;fy the constraints
(81) and (82) and minimize Pe.

It has been shown {50, 51] that a necessary condition for the set of
projection operators I‘Ij satisfying consirainis {81) and (82) fo minimize '
Pe in (83} is

2 Eflie = Z bip it (84)
=1 =1

This equatiion, together with the conditions

Z I;iI_Iipi -L.p are positive semidefinite -(85}
SR for all j=1,2,....M

provides a sufficient condition for the set of projection operaiors Hj to
be an optimum solution.
When the projection operators HJ have a complete set of elgenvectors
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in common, they can be taken as observables of the field, and the
receiver measures them simultaneously. Hypothesis I—Ij is chosen when
the observedﬂvalue of H;} i..s equal to 1, Because of (82), an optimum
receiver in a binary commaunication system is specified simply by one
projection operator IL 1

When the receiver is allowed to make ideal measurements of incom-
patible observables in the sense discussed in Section II, the structure
of the receiver is specified by the overcomplete set of measurement
state vectors, {lx )} when the outcomes, of the measurements are X
Since with {]x )} given, the probabllltles p._j are determined by the
rule (79), the problém of finding the optimum receiver structure is that

of findingl the overcompléte set {lxn)} to minimize

P =1-w max L(x fpl (86)
e 1sisM

Very litile is known about the solution of this minimization problem.
When only orthonormal setsof measuremernt state vectors ave allowed
as solutions, this problem is equivalent fo finding the operators Ilj, .Sub~
ject to constraints (81) and (82) to minimize Pe in (83). In general, the
two maximization proplems are not equivalent. [52].

To find optimum receivers in many communication systems of.
practical interest, there is no need to considér jdeal measurements of
incompatible observables It can be shown from the completeness (32)
of { ,X )} that in all binary communication systems and in those M—ary
gystems in which the densify operators pJ commute, opiimum receivers
measure observables corresponding to Hermitian commuting opera-
tors [53]. '
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Binary Dete ction

We are concerned here with binary communication systems in which
the input message in the time interval (b, T) is either the digit "1" or
the digit "0". A digit "1" is represented by the presence of a Signal
pulse of duration T; a digit "0" is represented by the absence of the
pulse. Therefore, j.n- the time interval (0,T) the ideal receiver
chooses between two hypotheses: (HO) ‘;the field in the cavity is due only
to thermal radiation, ‘: and (HI) the field contains besides thermal radia-
tion a signal of some specified form." The best receiver is one that
enables the choice between the two hypotheses to be made with minimum
probability of error, )

Hypothesis H1 represents a proposition that is either true or false.
We have seen that such propositions are decided by measuring a pro-
jection operator II. The outcome of the measurement is one of the two
eigenvalues of T, Oor 1, If1, hy'pothesis HI is adopted; if 0,. E@O. The
question remains, however, which of all of the projection operators Il
that exist for the received field is be‘st. It is answered in the gamé way
as classical detection theory: We must use the operator for which the
average probability of error is minimum [15, 18, 54].

Under hypothesis Ho the normal modes of the receiver are excited
only by-random noise; they are in a mixture of states described by a .
density o;')era'.tor Py’ such as the one exhibited in (62). Under hypoth-
egis Hl the normal modes are in some other mixture of states described
by a density operator p 1 such as the one in (63). Let { be the prior
probability of hypothesis H.. The average probability P, of error in
{83) can be rewritten

P_={ Tr[p TI + (1—C)[1-’J’i‘r [o 01!

= (1-0){1-Tr [tp, ~A p W]}, A, =1/01-8). (87)

This quantity is to be minimized by properly choosing the projection
operator I, The minimizing operator we call the detection opérator.

We have put Pe in (87} in such a form that the problem of maximizing
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Tr [(py~Agpo M ]

is clearly equivalent,
Let M be the eigenvalues, and Ink) the associated eigenvectoré of

the operator p; - Aopo.
(py=Ap,) Ink} = nk|ﬂk)- ' (88)
Then

Tt [(p,~A _p ] = Ll py=A e )Hlnk>
1 7ofo 1 “oFo
k

= z nk<ﬂk|mﬂk)- (89)
k

This quantity is maximum for that projection operator for which
(-nk[I]]-qk) =1 when n;_ > 0, and (nklﬂlhk) =0 W_hen n < 0, and the
projection operator that fulfills the requirement is

I = Z U(le)lnk) <lel’ (90}
k

- where U(x) is the unit step function. 'The, average probability of error

is then

P_= (1-t) Ll - Z, qu(nk)J. ) (91)
= .

Prescription. of the optimum receiver is simplest when the density
operators p_ and Py commute, The vectors ]nk) are then identical with
the eigenveciors ]d:k) common to both Po and p 1’ which can now be
written

37


http:Prescription.of

' g =
z Pl =1, (92)

In fact, the eigenvalues of - A are
g Mg Pt Py ofo

If the system is in such a state |q>k) that My > 0, or eduivalen@;.ly,
(1) u(0) _.
Py /Pk > AO,

hypothesis H. is chosen; otherwise HO ig adopted. This is just the

clasgsical likezlihoodfratid test.

Suppose, for instance, that the signal has the same stafistical pxjdp-'-
erties as thermal noise, placing an average number Ns of ‘photons into
a sihgle mode of the receiver and none into any of the others. Only that
mode needs to be observed, and we assume that under hypothesis HO ’
it contains thermal noise with an average number ./ of photons. The

density operators ur‘;der the two hypotheses then, by (59), are

[o.e]
py = (I-vy) Z {rlinlm) {m], i=0,1, (94)
: %0
where
v = A A+, vy = (WNENYAAN N+ 1), (95)

These density operators commute, and since both commute with wuc
number operator a+a, it suffices for optimum detection to count the

number m of ptotons in the mode. The likelihood ratio is

" 1 -v
(1} (0) _ 1 m . ;
P /Pm - (1_—;;;> (v:l/vo) (96)
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and it is decided that a signal is present whenever this ratio exceeds
AO = ¢/(1~¢); that is, when

1-~v1

m> | in AO - 1n (1 _Vc) 1n (vl/vo) = M.

The probabilitv of erraor is then
o g MPE [M]+1
P = trg T+ (1-g) (1M1, (97)

where '[M].is the greatest integer in the decision level M,

a. Choice between Pure States

When the density operators Po and P1 do not commute, it is neces-
sary to solve the eigenvalue equation (88) before the structure of the
optimum receiver can be specified and its performance assessed.
This is generally very difficult, In a special case that can be solved
exactly, the received field is in one pure state HJO) under hypothesis
H, and in another, ILIJI), under H;. The density operators are

b = Uy (¥ [ py = luy) (¥l (98)

Unless ,LIJO} and ]Lbl) happen to be orthogonal, P, and p; do not com-
mute. An exdmple is the detection of a coherent signal in the absence
of any thermal radiation. The eigenvectors ]‘qi) are now linear com-
binations of - 'l!Jo) and l{.pl),

Ay =a; lo.) +a, [0;), i=1,2. (99)

Only two eigenvalues differ from zero, and they are found by sub~
stituting (99) in (88) and setting the determinant of the coefficients
in the resulting pair of simultaneous equations equal to zero. The

minimum average probability of error is found to be [16, 55]
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P, = (1-0) | 5(14A )7 |

P = {[% {1-—AO)]2 +AO%}I/Z

g=1- ](4’0]4’1)12 (100)

In the detection of a coherent signal occupying a single mode in the
absence of thermal noise, the states ]tlxo) and Iule} are, respectively,
the coherent states '0) and ]}L), wnere ,p.! = N, is the average:

number of signal photons. Then in (100), by (53),
. .
g=1- [¢olpy] = 1 - exp(-N). (101)

The error probability P;a is plotted in Fig., 2 against the signal-io-

noise ratio
D= [4NS/(2JV+1)]1/2 (102)

as the curve marked 4 =0; the prior probabilities were taken as
t=1~¢=1/2, and A_=1. This signal-to-noise ratio D goes into
the classical sighal-to-noise ratio, [2N S.ﬁm/Kfﬂl/z, in the limit
v « KT,

b. Detection of a Coherent Signal in Thermal Noise

When the mode excited by a coherent signal also contains thermal
noise of absolute temperature .7, the density operators Po and Py
take the forms in (57) and (60), respéctively. An exact solution of
the eigenvahie équation (88) with these density operators has not
been obiained. Ii is possible to solve it approximately by using the
matrix representation of Py in (61) and diagonalizing a truncated versicn
of the infinite matrix by means of a digital computer. Figure 2 gives

the error probabilities so obtained; the largest matrix found necessary
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used the first fifteen rows and columns of the infinite matrix
(nl(pl—Aopo)£m>.

When the average number .4 of thermal photons is very large,
the clas'si"cal limit is approached. The classical detector of a sig-
nal of known phase in thermal noise corresponds in this model to
measuring the component of the operator a albng the phase of the
signal, If we take, without loss of generality, the phase arg i as
zero, the classical detector measures the operator Q and comparés
it with a decision level.” The probability density functions of the out-

come ¢ under hypotheses I-Io and I—Il, respectively, are [56]
2:~1/2 2 2
P () = (alp |a) = (2w /2 expl-q®/20%"
and
- - 1/2
P,(q) = (a|p1!a) = (2m6%) " exp[ {q-—(Zﬁ/m p} /Zcr 1

where i now is real and o = ﬁ(./i/-l-él—)/m
The decision level q, with which q is- compared is determined

from the likeliﬁood-ratio formula,
) = 10
Pl(qo)/P.o(qo) A (103)

It is not hard to show that the probability of error by using this

classical detector is

= ¢ erfc (—i;:b +D 1t AO) +(1-t) erfc (%D—D—IlnAo)\,
(104)

where D is given by (101) and
erfc x = (2w) -1/2 S exp('-—-tz/z) dt (105)
x

is the error-function integral. For ¢ = -;ll-the error probability is simply
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Pe= erfc (%D), (106}

which has been plotted against D in Fig. 2 as the curve marked

A = w0, This classical detector can be used at any value of A4, but
it suffers a higher probability of error than the optimum detector.
The differencga'be’cween the two detectors wvanishes rapidly once the
average number 4 of thermal photons in the mode becomes of the
order of 1, '

If the signal occupies many modes of the received field, the
problem appears much more complicated. If it is a narrow-band
signal, however, all ‘of the modes excited by the signal will have
nearly the same average number ¥ of thermal photons. ¥ is then
possible to combine the amplitudes of those modes linearly in such
a way that the resulting field amplitude contains the entire signal, ineffect
creating a new mode matched to the signal, as discussed in Section IIL.
By means of other linear combinations a new set of modes orthog-
onal to the matched mode and coniaining no signal excitation is
formed. The problem is then reduced to detection of the signal in
a single mode and the results just derived apply [57].

. If the absolute phase & of the signal is unknown, as will happen
if no attempt is made to maintain phase coherence between trans-
mitter and receiver, the density operator Pl must be averaged with
respect to this' phase, In the least favorable situation, the phase is
a random variable uniformly distributed from 0 to 2w,

The elements of the mairix (n]pl lm) specifying Py in the numper
representation are given in (61). When we average with respect
to ¢ over (0, 2r), all of the off-diagonal elements will be zero. The
average density opex_'ato-r (py) then, like Py 1S diagonal in the num-

ber representation

[+ 8]

oy = ) P eyl (107)
k=0 )

with
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Plil ) = (1-v) v& exp]—{ 1-v)N_] Ln[—(l_—-v)st/v

N, = Jul?, (108)

-where Ln(x) is the ordinary lLaguerire polynomial.

The optimum receiver, therefore, simply counts the number of
photons in the matched mode and compares it with a decision level
determined by the likelihood-ratio formula (103). The average
error probability can be computed from (108) [58]. Curves calculated
for ¢ = (1—§‘] =—21-by digital computer are given in Figs. 3 and 4. In
the limit # = © the error probability coincides with that of the

classical detector of a signal of random phase.

M-ary Detection

In general, there may ekist no solution to the problem of finding pro-
jection operators Hj’ satisfying the constraints (81} and (82), to mini-
mize the probability of error P{3 in (83). Here, our attention will
be confined to the special case in which the density operators pj
commute. For this case, the projection operators Hj’ which satisfy
the sufficient conditions given by (84) and (85), can be written

=), Piglén) (o) (109)
1t

where lci:n) are the simultaneous eigenvectors of the density operators

p.. j=1,2, ... M. Let p(J) denote the eigenvalue of the demsity oper-

a%or pj corresponding to lEche eigenvector ]¢n}. For any j=1,2, ... M
and n = 1,2,..., "the probability Pip in (109) equals 1 if
z;jpg? > gipg) for all i#], and equals zero otherwise.

For simplicity, we assume that the M messages m;, My, ... My,

occur with equal prior probabilities. Therefore, the information

rate R, in nats per second, of the communication system is

R = [In M]/T. {110)
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a. Detection of Orthogonal Signals with Known
Amplitudes but Random Phases

Let us envision an M-ary communication system in which each
transmlﬁ:ed message is represented by a signal pulse of duration T
with known classical amplitude, but an unknown absolute phase.

Let z denote the direction of signal propagation. When the signal
field_is not modulag;ed spatially and is linearly polarized, its clas-

‘sical waveform at the receiver can be described by the function
2R/ [8{t) expliv (z/c-t1+id} ],

where S(t) is one of a set of complex time functions {S.(t)} depending
on the transmitted message The absolute phase .¢ of the signal is
taken to be a random variable uniformly distributed over the 1nterval
(0,2w), In particular, -we assume that the functions S (t) are
essentially narrow-band [59] orthogonal time functions over any sig-

naling interwval,

. T * _z
S‘ S.(t)S. () dt = E®S..;  iL,j=1,2,... M. . (111)
o I 7 Y ‘

To describe this signal set quantum-mechanically, we rggard the
received field to be a superposition of plane traveling-wave modes-
with riorinal mode functions V /% exp[-iw z/c]. When the fransmitted
message is m., the received field would-be in one of the coherent

states 1l ]pk 14’) in the absence of thermal radlahon " The complex
k

amph’cudes ij of the individual modes are known and are related
to the waveforms S.{t) by -

Sj(t) =z (Hwn/z e;)V)l/Z ip.jn exp[i(mn-nogo}(z/c—t)]) j=1,2,... M,

n

In moést practical systems, the width of the frequency range of interest

is small compared with the carrier frequency @ therefore, "we may
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asguie that for all n for which "Ljn # 0, ,

© ' (112)

Since the complex functions S.(t) are orthogonal, the complex ampli-
tudes Fin Satisfy the .condition

Z "Ljnp';:n -

n

2 .
. i = . )
P e k=12, ... M (113)

In the presence of an additive thermal-noise field, the received

field is the mixed state Specifie‘d by the density operator

2n d .
o= § e § el ST I (e a/mry (i)
when the input message is _mj. Since by (112), the avex;aée nuni}ﬁgz}:s,
N i ©of thermal photons in different modes are approximately eqial,
N A, the density operators p; are commutative’ [60] For the
reception of these M signals, ithe optimum receiver measures simul-
taneously the projection operators HJ n (109). Equivalently, it mea-
sures the numbers of photons in the M modes associated with normal-
mode functions S.(t)/E and with annihilation operators b. =

E . a /l;.L |, where [61].

jnn
Rk
in
n
When the outcome isn= (nl, p1es B ) hypotheS:Ls H,, the trans-

“is chosen if the condltlonal probability P(nx]m)

mitted message!\mJ
is the largest among all j. For M signals with disjoint frequency
spectra, as in a fr:,e_quency—posfclon modulation system, the optimum
receiver can be implemented as shown in Fig. 5. The function'of the
maode trar;sformation filter is similar to that of an optical matchea

filter [62]. The optimum receiver for a set of pulse-position modulated
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signals is simply a direcl deieciion system.
To compite the performance of this system, vs}e shéll,assume
for simplicity that

]Hj]z = pT. (115)

Since Ip.j] 2 is the average number of photons in the signal field

. when mj is transmitied, p is the average numbe?:‘ of signal photons
arriving at the receiver per unit time, which by (115) is independent
of the transmitted message. In this case, the probability of error,
P_, can be bounded [63] as

K, exp[-TCE(R)] € P_ <K, exp[-T CE(R)], 116}

where the coefficients K. and Kz are not exponential functions of 'T.

1
The information rate R is given by (110), C is the channel c:za.paci.’cy,2
and the exponential factor E(R) is the system reliability function.

The channel capacity C is found to be

C=piln (141/A4); '/sz./y

(117)

21%; In (1427, /7).
where P = phw.is the average received signal power, n, = %ﬁw is
the so-called zer'fo-—point fluctuation energy, and My = A fiw is the
average thermal energy in each mode of the received field. In the
classical limit with 4 » 1, the channel capacity.C is approximatel;
egual tlo Cc = P[Tio, the capacity of the classical additive wti?‘.te
Gaussian channel with no bandwidth constraints [64] and with noise
spectral density Ny~ K7, ’

For rates R in the rangé 0 € R S R_, where R is given by
B,/C = Q+A)/ (1424, (118)

the system reliability function E{R} is bounded from below b)_f
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E(R) = [(1+2JV In (1+1/47)] —~R/C. (119)

For raies o 11 e range ne =R = C, the reliability filncti.o_n E(R)
is .given. by

- _1 |1+24#R/C - t1+4R;A/(1+/V)]C]1/?
ER) = {A In(1+1 /4 )} _

I- [1%4RJV(1+JV)/C]1/2'

1+ 24(1+4)R/C + [1+4R A (1+.47)/C] 1/2
ZR(1+./V)2/C

~ln
{120)

The general behavior of the system reliability function for several
different values of 4 is shown in.Fig., 6. In contrast to the cor-
responding classical additive white Gaussian channel, E(R) depends
not only on R/C, but also on the aveI;age noise level

When A4 = 0, the channel capacity .C in (117) becomes infinite,
while E(R) approaches zero, The probability of error becomes

p_ = exp[~Tp]. (121)

The fact that P_ is independent of the humber M of messages when
A equals zero 1mphes that an arbltrarlly small probability of
error can be achieved at an arbitrarily large iriformation rate for
a finite number p of. photons per second in the signal field. Since
gignals are orthogonal, hoWever‘, the average power in the signal field
grows linearly with the number of input messages when p is being held
constant. Hence the small probability of error is accomphshed
'only by an accompamed increase 1n the power ‘of the transmltted
signal. It is more meaningful to derlve the expressions of the channel’
capacity and the system reliability function under the assumptlon
that the average power in the signal, = !p. (e ) 1/ 2[ /T is held

n

constant independently of the transmitted message. Unfortuna’cely-,

analytic resulis cannot be obtained in this case.
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It has been’shown [65] heuristically, by use of the uncertainty
principle, that, with no bandwidth constraints, the channel capacity
has an upper limit £ (P/h) 1/2 » where P is the average signal power,

“and 4 is a number that approximately equals 2.

b. Detection of Orthogonal Signals in a Rayleigh Fading Channel

We now consider a communication system in which the received
field in the presence of thermal radiation is in the completely inco-
herent mixture of states described by the density operator

det'g)] S‘ S.exp ZZ m ....3 mn @’ 1’]J.;ll lani)(am’ a° am/-;rVM

(122)

when the transmifted message is mj. In this expression, §i>1. is the

mode correlation matrix whose elements are
_ + = 1 (t)
[j?']nm = Tr [pjaman] = [f;] Lm + ./Vsmn, (123)

where 4 is_the average number of thermal photons in each normal

mode, ¢§t) are elements of the mode correlation matrix in the

mn .
absence of the thermal radiation. When the signals have orthogonal

classical waveforms at the receiver, the mode correlatlon matrlces
4> commute, and therefore the density operators Py commute: The
commutatlwty of the matrices ¢3 implies the existence of umtary

transformatlon V such that the matrices

(124)

-6
[
i
..'-"
o
&

R. =
~3

are diagonal. When the elements of ¢j are given by (123), the K0

diagonal element of the matrix §j can be written

[R e = A ¥ sy o i=Lz, L M (125)
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The system described above can serve as a quantum-mechanmal
model of a diversity transmission system in which signals are trans-
mitted over a-Rayleigh fading channel. When a signal pulse with
classical waveform- Sj(t) CcoS8 coot is transmitted through suck} a chan-
nel, the classical waveform of the received signal is x3.(t) cos (w t+¢),
where x and ¢ are semple functions of random processes such that
at any time t and amy point g, x(x,t), and ¢{r,t) are Reyleigh- -
distributed and uniformly distributed random variables, respectively.
(For simplicity, we suppose that in a given signaling interval and over
thie receiving aperture, they ¢an be considered as constant ragidgm '
variables.) It has been shown [66,67] that the probability of e;;ror in
the reception of orthogonal signals transmitted over a Rayleig}l fading
channel can be reduced by making several transmissions for each input
message. These transmissions are spaced either in time, space, or
frequency so that fadings experienced by different transmissigns are Sia-
tistically independent. Such a system is called a diversity trénsmission
system. The density operators p3 in (122) describe, quantum—
mechamcally, the received field in a diversity transmission system in
which each input message is represented by several narrow—-]q_and gig-
nals with orthogonal classical waveforms [68]. In (125), SJ is the
average number of signal photons received at the end of the kth
diversity path when the message mJ is transmitted. Let v denote
the number of diversity transmissions; for each j, SJk * 0 only
for v of the possible values of the subscript k.

Without loss of generalily, we confine our dlscussmn to frequency-
diversity systems in which frequency-position modulatlon is used;
the frequency specira of the signals are disjoint. The optlmum
receiver for the reception of these signals measures mmu}t?negusly
the observables corresponding to operators b:.bn’ wher‘e bl"1 =
z Vnkal V. are the elements of the matrix V in (124). ." The
Operators a, are ihe annihilation operators in terms of whj.ose ’righ?
eigenvectors Py is expressed in (122). Again, hypotheses are chosen
by using the decision rule (79).

The performance of such a system has been evaluated when the num-

ber of signal photons S aTe equal [69]
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Sjk =g N (126).

for j=1,2,.,.. M and all k for_ which Sjk # 0. For the narrow-band
signals considered here, (126) also implies that the signal energies in
the v diversity paths are equal, as m an equal-strength diversity sys-
tem. For this _special case, the structure of the optimum receiver
simplifies to that shown in Fig, 7.

dJust as in the case of known signals in thermal noise, the bounds of
the probability of error P_ can be exgressed as in (116). The guantity C
given by (117) is the capacity of the system in which signals are in-
coherent states. The average number p of signal photons per second
equals S/T in this case, where

S=us (127)

is the total number of photons transmitted through wv diversity paths.
The system reliability function E(R) is the solution of the maximi

zation problem,

E(R) = max 1e(s,s)-8R/C}
0<6<1

5.
! 148 |]  (128)
e(6,s)={(1-{-6) In {1+(./V+s)'[1_. (1":/{/ 1;—;4;/1—5) :‘}

-6 1n [1+s/(1+‘/t/)]}/s In (1+1/4). .

As in the case of coherent signals, the reliability function depends
not only oni'the signal-to-noise ratio s /¥, but also on the average
noise level A and the number of diversity path v. The optimum
reliability function EC(R) is obtained by maximizing the function E(R)
in (128) with respect to v, or alternatively, with respect to SJ. Let

s® denote the value of 5 that maximizes the function e(8,8); then

E%R) = max {e(S,so)—éR/C} ¥ (129)
p=so=l
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if the value of s° does not exceed S, Wheén s° is larger than S, we
have

E°R) = max {e(s,S)-8R/Cl. (130)

0<6<1

This maximization prdblem has been solved numerically, The
results are shown in Fig; 8, where the optimum average number s© of
signal photons per diversity path is plotted as a function of R/C for ‘
N=0.1 and A = 10. Also shown in Fig. 8 is the value of 59 in
the classical limit [70]. The values of sC/ N for rates R less thén
Rz are independent of R/C, but they are functions of the average
noise level . If the effeciive noise in the system {s taken to be
(¥ +-21—) the optimum ratio s°/(#'+3) is voughly 3 for B < RJ
independent of the value of /. ’

For ra.tes greater than Rg, the value of s° increases rapidly
with R/C. That is, for a fixed value of S, the optimum number -
of equal-strength diversity paths decreases at information rates’ higher
than Rg. From Fig. 8, it is clear that for increasing R/C, g°
increases ‘without bound. Hence, when the average number c_)f trans-
mitted photons is fixed at S, a point where the value of s° is egﬁal
to S will eventually be reached. That is, the optimum value of v
is equal to one. The rate at which S = s is called the threshold
rate for the given value of S.

Let us assume for the moment that for any given value of R/C,
S is large so that §/s° is larger than 1. In this limiting case, the
optimum value of .E°(R) as a function of R/C is given by (130). Thé
general behavior of EO_(R) at rates above the threshold is given by
Fig. 9 for different thermal noise levels. The reliability function

for the optimum -classical fading channel is also shown for comparison.
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V. QUANTUM ESTIMATION THEORY

The communication systems treated thus far transmit information
digitally by encoding it into symbols from an alphabet of two or more
elements, the receiver is designed to make decisions.among two or more
correspondmg hypotheses. It is also possible fo transmit information
on a continuous basis, by encoding it into the amplitude of the slgqal
(pulse-amplitude modulation), into its carrier frequency (pulse-frequency
modulation),. or into its epoch (pulse~time modulation). The receiver is
then confronted with a task not of decision, but of estimation. The infor-
mation to be extracted appears as a set of paramefers 8 = (61,92,. .. QM}
of the received field.

In studying classical communication systems, we assume that the
receiving aperture field can be sampled in as much detail as we wish in
order o generate a setx = (Xl’ KpsoooXoee ) of data having a known joint
probability density function P(x, E), which depends on the information-
bearing parameters 6 Estlmﬁz‘a.tion theory is applied to determine an
estlmator G(X) of the parameters that minimizes some cost functlon
C(e 6), whlch measures the cost to :,he experimenter of a551gmng a set
of estimates e to the parameters when their true values are 8 Examples
of commonly used cost functions are the mean-square error and the
absolute error [7 1]. For the purpose of finding the pest estimator, it is
usually necessary to provide a prior joint probability density function
z(8) of the parameters, which represents the distribution of relative fre-
quencies with which will appear in certain ranges of values in the
communication system envisioned. As an example of the pregcrlptlons
derived from estimation theory, we mention the maximum-likelihood
estimator, which assigns as the estimate of a parameter 9 that value for
which P(x, 8) is maximum, the prior probability density functipn z(6)
being assumed very broad.

When the communication system is described quantum-mechamcally,
the received field is described by a density operator. p(8), which is a

function of the unknown parameters 6. If the receiver measures

observables corresponding to commuting Hermitian operators
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X = {Xl, Xz, .. XL) the joint condl’clonal probability density function of
the outcomes x = (Xl’ Xy oo e L) is glven by

Pix| 8 = (xle(®)] x). (131)

Apgain, ]5) are the simultaneous eigenvectors of the operators X cor-
responding to the eigenvalues x. It follows that the joint probability

density function of the parameters 9 and the observed data x is just

P(g, 8) = z(8){xl e (@) x). (132)

The optimum estimation function §(§), which assigns the data X to an
estimate § of the parameters, can be determined from classical esti-
mation theory. OQur problem is, therefore, that of finding the operators X
whose orthonormal set of eigenvectors {[ 5)} is such that the average

cost

C= 5‘8 Z(E) C(E(X): E)(f' P(E)lgf) dgd?f (133)

is minimum.

Alternatively, "The values of the parameters @ lie between 8' and
9" + A" is a proposition of the kind described in Section II [72] If the
range of possible values of 0 is broken up into contiguous, but-nonover-
lapping intervals AR, and if the entire array of corresponding prop051—
tions is tested, one of them must be declé.red true and the rest"false.
The resultf is an estimate of 8 within an uncertainty A8, which in
principle can be made as small as we like. When the observables mea-
sured by the receiver correspond to commuting Hermitian operators,
each such proposition is associated with a ;':)rojection operator, .which we

denote AE(B;) for the range (9" 6'+Agt)’ These pro:iectlon Operators

Pommute and add up to the identity operator
) EE)=1. (134)
el

assing to the limit AB' — 0, we speak of a resolution of the identity
1E(68'), with
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{ ey =1, (135)

and this resolution is in effect an estimator of the parameters 8.

The probability, _B being the true value of the parameters, that the
estimates lie between o' and 6‘ + dg' is Tr [p(e)dE{G‘)] and the average
cost is therefore [‘?3]

C= ﬁ 2(8) C(8, ) Tr [p(6)dE(8")] do. (136)

This average cost C is to be minimized by chooging the resolution of the
identity, dE{8'), over the entire range of possible values of .

When the receiver makes an ideal measurement of Incompatible observ-
ables as discussed in Section II, its structure is specified by a complete
set of measurement siate vectors {}x}} when the outcome of the mea~
surement is x. For g given set of measurement state vectors ﬂ x)} the.
manner in which the receiver assigns to the data X an estimate B(X) is
prescribed by classmal estimation theory. Our problem is to find the set -

of measurement state vectors {|x)} to minimize the average cost function
in (133). Since very little is known about the solution to this problem, we
shall not be concerned with it hereafter.

In the following discussion, the cost function with which we shall be

solely concerned is the mean-square error of the estimate

M
€= z 5[(6.-0.)%] (137}
- o~ "’.i Ni *

i=1

The specification of the measured compaiible observables X and the
estimate functions 8 {x) can be combmed in the speclflca‘tlon of quantume

A
mechanical estlmators C) = (@1, @M) of the parameters 9 82, - GM’

where
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@i=5 8:x) [x) (x|

= Y 6} dE(8"). (138)

These operators are Hermitian and commutative, ix) being the simul-
‘ . AT ]
taneous eigenvectors of X. A measurement of @i yields an estimate

A :
0, of 6,. The mean-sauare error € in (137) becomes

M
€(@) = Z Sz(fg) Tr [p(8)(8;-0,1)%] de (139)
i=1 ' '

when ,9 is a set of random parameters with prior probabilily density
function z(0). When 3 is a set of unknown parameters whose prior
probability density functionsare unknown, estimators are sought that have
small or zero bias and at the same time have a small mean-gquare error
over a broad range of true values of the parameters. The bias of an
estimator @)i of a parameter Gi is

(’e‘i> -0, = Tr [6,0(8)] - 0.. (140}

The mean-~square error is
A A 2 .
€, = Tr [p(@}©;=(8,) 1)°]. (141)

The problem of finding commuting Hermitian quantum-mechanical
estimators ({5\)1 to minimize the ‘'mean-square error e(@) has not been
gsolved for density operators p( E } that c}o not commute for different
values of the parameters 0. When the density operators commute, thg:"y

possess a common set of orthonormal eigenvectors, | ¢n). In other words,
pe)= ) B (4.
n

. < A e
The quantum-mechanical estimators @1. 2] PUREE @M that minimize the
mean-square error in (139) and (141) can be written
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i

6,= ) Smle)el. (142)
n

'Qi(n} ig just the conditional mean

8= { o,20) P (8) d8 / {X 2(8') P(0") d,e:} (143)

when the parameters are random variables.
Suppose that we wish to estimate the signal strengihs of different
modes of the received field described by a density operator

v .
p(g) =" k_z}i exp[-igklz/w@s;k}}!e.k}@kf dzak/{‘/i/+sk),
The parametfers § are identified with the average numbers Sy of signal
photons in the different modes. As dlscussed in Section IV, & §p can be
considered as the signal strength in the k transmission through a
Rayleigh fading channel in a diversity system. Since for all values of' s S
the elgenvectors of p(B) are In Noyewol, ); the simultaneous elgen~
vectors of the number operators al": K’ 11: suffices to measure the opera.-

tors aka The outcome n = (n -, } of thls ’neasurement is a

1) 2: hd
sufficient statistic [74] whose joint probablhty is

- 3
P(n,{sk}} = 3? {1=v. ) v3

vy = (./f/+sk}/(l+Jf/+sk). {144}

In this equation, . 4 is the average number of noise photons. The outcome
of a measurement of the operator a; . is an unbiased estimate of the sum
WA+ S+ By subtracting the known value of A, an un‘cgmsed
estlmate of 8y is obtained, which happens to have the smallest possible
mean-sSguare error.

It has been shown [75] that the quantum-mechanical estimator O of &
single random parameter 9 with & prior probability density function z{8)
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that minimizes the medn-square error, satisfies the operator equation
A A .
'e + &I' = 2n. {145)

when the operator

I= g z(0) p(0) do (146)

is positive definite, andn = [ 6p(6) 2(6) d6. Moreover, the optimum
A .
estimator @ is uniquely given by

({*j =2 Sm em]'-‘tz M el_‘a‘ de. {147)
0
This result can be used to find the optimum: quantum-mechanical
mean-square-error estimate of the complex plane-wave envelope m(t)
in double-sideband modulation [76]. Since m(t) can be represented by
its Karhunen-Lodve expansion

m(t) = z ' m, s, (t), {148)
k

the problem of waveform estimation ig reduced to the estimation of the
random parameters m, . When the bandwidth of m(t) is very small '
compared with the carrier frequency w, the densn:y operator p({mk})

describing the state of the received fields is

p({m,})= S.éxp - Z |8, ~(2¢ V/Hw) ]//V T |pk><gk1 a®, /n A

k

where the vectors iﬁk) are the right eigenvectors of the annihilation
operators bk associated with the modes with normal-mode functions skl'(t).
When the prior joint probability density function of the parameters

m, is
k
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Pi{md) =1 (o7 expl-ml /o],

.. . . A
the minimum mean-square-error estimator ®k of m, can be found fram (147},

A _ (T 1 -2, 1
®, = (bk+bk) N /2% (2 S+ ME Z)
x = (Ho/2¢v)/2
The mean-square error associated with the optimum extimator ék is
= E[(®. -m. }°] = L R G
€, = §[(®k m, ) ]= J\k(./V+ z)/(zxkx + A4 4 z)

which is the same as #he clagsical estimation error in white noise,
whose spectral density is (./V + %‘)ﬁm [77]-

Quanium-Mechanical Cramér-Rao Inequality

a. Single Unknown Parameter

Although the best estimator of a parameter 9, given the density
operator p(0), has not been found in general, a lower bound can be set
to the mean-square error attainable by any estimator. It is the quantum-
mechanical counterpart of the Cramér-Rao inequality of classical
statistics [78, 79].

Let é\) be an operator whose measurement yields an estimate 8 of
the parameter 8. The expected value of the estimate 8, when the true

value of the parameter is 6,
A A FA)
E[0] = Tr [p(9)8] = (¥), (149)
and the mean-square error is
A A A ,AL2
¢ = B[(8-(8))"] = Tr Lo(e)@ ~( §))7]. (150)

A
£ (0) = 0, the estimate is said to be unbiased.
‘ According to the quantum-mechanical.form of the Cramér-Rao

inequality € cannot be smaller than [17, 80]
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e >[a(8)/201%/ [Tr[eL2]]. (151)

where L is the symmetrizedlogafitfnnic derivative of p(8) with respect
to 6, defined by

ap(8)
EE)

== (oL + Le). (152)

Furthermore. the lower bound can be attained if and only if the sym-

metrized logarithmic derivative L has the form
- . A ’
L = k(8){®-0), ) {153}

where k(0) is a function only of the true value € of the parameter. The
estimate 8 is then unbiased, for by (149) and (150), k(6)({8)-0) =

Tr (pL) = Tr [8p(0)/890] = 8[Trp(0)]/88 = 0, since Tr p(®) = 1 independently
of 8, whereupon {(8) = 6. The first factor (8¢ 6)/88)2 in (151) then

equals 1, -and we find that the m‘ean-square error attains the minimum

possible value
~1
= |k(8)] (154)

min

-An example in which the lower bound is attained is the estimate of the
amplitude A of a coherent signal in a single mode, corresponding to the

state |A}.L), where p -is a known complex number, Ipl =1, Here Az = NS

is the average number of signal photons in the mode. The noise is of the

thermal variety, and the density operdtor p(A) takes the form
w1 . 2 L2
p(A) = (7. 4) fexp[—la-Aul /A Ma) (c| d%a, (155)

where 4 is the average number of thermal photons per mode. The

syn_nmetrized logarithmic derivative L. can be shown to be-
L= 4 -A)/ (24 +1), (156)

with
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& = %'(}‘La++u*a) (157)

an unbiased estimator of the amplitude A in terms of the annihilation
and creation operators of the mode. The minimum mean-square error
of this estimate, by (153) and (154), is

1 -
€ =L ,
; c (2 M+ 1),

and the relative mean-square error is

i/ AY = @ A+ 1)/4N = D72, (158)

where D is the signal-to-noise ratio defined in (101) for.detection of a
coherent signal in thermal noise. The estimating opéra’cor & is pro-
“portional to the quasi-classical detection statistic described in Sec-
tion IV [81].

b. - Single Random Parameter

Let @ be the quantum-meéhanical estimator of a random parameter.9
with a prior probability density function z(6). The quantum-mechanical

form of the Cramér-Rao inequality is [82]

€ = SI z(6) Tr [(@-eyzp(e)] de

. 2
= RA {S\ z(0) Tr [P(S)LL(GH E% In Z(a)] ] a9,

where L:(0) is defined in (152). Equality holds if and only if

A d
©-el= k[% In p(8)+ L(0)

for some constant k.
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Footnotes

A note of caution is advisable here., While it is true that all hypoth-
eses relating to the values of compatible observables are evaluated
based on the outcomes of measurements of projection 6pera‘tors
such as Trj, it is not abvious that all projection operators can be
measured physically. Tquivalently, while all observables corre-
spond to Hermitian operators, it is not clear that all Hermitian
operators with complete sets of eigenvectors correspond to observ-
ables, which in principle are measurable. Thig problem, of obvious
practical importance, is beyond the scope of this paper, and we do
in fact assume that any Hermitian operator that has a complete set

of eigenvectors is an observable.

The channel capacity is the maximum rate at which the error; prob-

ability Pe can be made arbitrarily small when constrained in signal

‘power, Operation at a rate higher than capacity condemns the sys-

tem to a high probability of error, regardless of the choice of sig-
nals and receiver,
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Fig. 1.
Irig. 2.
Fig. 3.
Fig, 4.
¥Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Figure Captions

Quantum-mechanical model of communication systems.
Probability P of error in detectlon of known signal with prior
probability ¢=1/2. D= signal-to-noise ratio =[4N_ Je N+ 1)]1/‘2
NS = average number of signal photons, A =average number of
thermal photons.

Average prohability P, of error vs average number S of signal
photons, idezal quantum receiver of a coherent signal of random

phase,

Average probability P o of error vs signal-to-noise ratio S/N,

ideal quantum receiver of a coherent signal of random phase.

Quantum-mechanical optimum receiver for narrow-band orthogonal
signalé with known classical amplitudes but random phases.

System reliability function for ortnogonas coherent signals.

Optimum receiver for equal-sirength orthogonal signals in &
Rayleigh fading channel.

Optimum numb‘er‘ s® of signal photons per diversity path/average
number. A of thermal noise photons vs R/C (Classical limit
taken from [67].)

Optimum system reliability function for equal-strength orthogonal
signals in Rayleigh fading chamnel. (Classical limit taken
from [67].)
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